Introductory Econometrics

Overview of the Course

- Economics suggests important relationships:
 - How does another year of education change wages?
 - What is the effect of inflation on housing prices?
- This course is about using data to measure these relationships.

Aim of econometrics

- Econometrics differ from statistics:
 - by the applications (economic variables)
 - by the theories that are used to "model" the relationships between variables

Course Topics

- 1. Introduction
- 2. Introduction to Data Analysis
- 3. Probability and Statistics Review
- 4. Fundamentals of Regression Analysis
 - -Single Regressor
 - -Multiple Regressors
- 5. Extensions
 - -Binary Variable
 - -Panel Data
 - -Instrumental Variables
 - -Time Series

First lecture

-What is Econometrics?
-Steps in Empirical Economic Analysis
-The Structure of Economic Data
-Causality and the Notion of Ceteris Paribus in Econometric Analysis

Econometrics = Econo + metrics

 Econometrics, literally "economic measurement," involves quantitative analysis of economic problems.

It is the application of statistical methods to connect theoretical economic models to data.

Econometric methods are therefore central to economic research.

Economic Models \iff Econometrics \iff Economic Data

- Econometrics
- -employs statistical methods
- -to analyze data
- -in order to
 - 1. estimate economic relationships,
 - 2. evaluate government and business policies,
 - 3. test economic theories, and
 - 4. make predictions and forecasts.

Examples of questions that econometrics is useful for

-How are hours spent on homework and final grade related?

-Suppose the university imposes a maximum number of problem sets on ECO 332. How does this affect students final grades?

-Is there a causal relationship between the education of the mother and education of her children?

- 1.Formulate the questions of interest
- 2.Obtain and analyse data
- 3.Construct an economic model
- 4.Specify an econometric model : estimation, testing, prediction or forecasting

1) Formulate a question of interest

-Does income influence driving habits?

2) Construct an economic model

"Economic Models consist of mathematical equations that describe various relationships."

-Driving=f(age, income, training, family, vehicle, location)

- *Economic Models Can Come From Formal Derivations...*
- Formal Derivations Arise From Economic
 - Assumptions and Models:
- -Resources are scarce
- -An increase in price causes a decrease in quantity demanded

VERY SIMPLE Formal Derivations... -Brushing one's teeth is a function of inputs...:

brushing=f(time, toothpaste)

-The amount of toothpaste purchased is a function of price, availability, income and price of substitutes (ie: whitening strips)...:

toothpaste= $f(P_{tp}, avail, I, P_y)$

-Time is a function of income, work, sleep, family status, motivation (laziness)

time=f(I, work, sleep, family, motivation)

- Economic Models Can Also Arise From Intuition or Observation:
- -Tall people don't like Wii video games
- -Small businesses are less likely to change prices
- -Marks are higher in morning classes than afternoon classes

- Economic Models Can Also Arise From A
- Mixture of Formal Derivations, Intuition or
- Observation:
- -Tall people don't like Wii video games
- And
- -Quantity demanded is a function of price
- Therefore
- Wii game demand=f(height, price)

From Economic Model to Econometric Model

Formal economic modeling is sometimes the starting point for empirical studies, but it is more common to arrive at econometric models directly by economic "intuition".

3) Specify an Econometric Model

 Econometric Models have specific functional forms and OBSERVABLE parameters

A model of human capital investment implies getting more education should lead to higher earnings

Earnings = $\beta_0 + \beta_1$ *education* + *u*

There exist a variety of types of economic data:

Cross-Sectional Data
 Time Series Data
 Pooled Cross Section Data
 Panel Data

1) Cross-Sectional Data

-A cross-sectional data set consists of a sample of individuals, households, firms, cities, states, countries or a variety of other units, taken at a given point in time.

- Cross-Sectional data set is assumed to be a RANDOM SAMPLE However, a sample of the population is not random if:
- 1) A <u>sample selection problem</u> occurs (some categories of respondents are more likely to respond than others)
- 2) Sample size is too small
- 3) Sample size is too large

Sample Selection Example:

-Rich households are less likely to report their incomes

Small Sample Size Example:

-Any study with less than 30-40 observations

Large Sample Size Example:

-Asking 80% of this class their opinions on the text and expected grade

TABLE 1.1

A Cross-Sectional Data Set on Wages and Other Individual Characteristics

obsno	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	1
1 1 1	:	:	:	: : :	:
525	11.56	16	5	0	1
526	3.50	14	5	1	0

2) *Time Series Data*

- -Time series tracks the movement of (one agent/group's) variables over time
- *Examples* -Stock -GDP
- -Beirut's vacancy rate

- 2) Time Series Data
 - -Time series data can vary in *data frequency*
- (daily, weekly, quarterly, etc.)

-frequent time series data can be *aggregated* to evaluate all data on the same frequency

Time Series Data

TABLE 1.3

Minimum Wage, Unemployment, and Related Data for Puerto Rico

obsno	year	avgmin	avgcov	unemp	gnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
1	i	3	i.	1	:
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

- 3) Pooled Cross Sections
 - -Pooled Cross sections are a combination of RANDOM samples from different years
 - -the same observation should not be followed over different years
 - -Analysis is similar to cross sectional data, with the additional consideration of structural changes due to time

Pooled Cross-Sectional Data

TABLE 1.4

Pooled Cross Sections: Two Years of Housing Prices

obsno	year	hprice	proptax	sqrft	bdrms	bthrms
1	1993	85500	42	1600	3	2.0
2	1993	67300	36	1440	3	2.5
3	1993	134000	38	2000	4	2.5
:	:	÷	1	E	:	:
250	1993	243600	41	2600	4	3.0
251	1995	65000	16	1250	2	1.0
252	1995	182400	20	2200	4	2.0
253	1995	97500	15	1540	3	2.0
1	÷	:	1	÷	:	:
520	1995	57200	16	1100	2	1.5

4) Panel Data

-time series data for EACH cross-sectional agent

-also called longitudinal data

Panel Data Advantages:

- -able to control for unobserved characteristics
- -able to work with a larger data set

-However, more difficult to work with

Panel Data

TABLE 1.5

A Two-Year Panel Data Set on City Crime Statistics

obsno	city	year	murders	population	unem	police
1	1	1986	5	350000	8.7	440
2	1	1990	8	359200	7.2	471
3	2	1986	2	64300	5.4	75
4	2	1990	1	65100	5.5	75
:	:	:	÷	:	:	÷
297	149	1986	10	260700	9.6	286
298	149	1990	6	245000	9.8	334
299	150	1986	25	543000	4.3	520
300	150	1990	32	546200	5.2	493

One goal of econometric analysis is to examine the causality of two variables

Why?

-a simple plotting of two variables or

calculation of correlation will only see if the

two variables move together

-can't show causation

Ceteris paribus

-causality can only be correctly examined Ceteris

Paribus – with all else held equal

-one variable's impact on another variable can only be isolated if all other variables remain constant

Causation in the real world

-in the real world, variables change for a reason

-Is the change in Z due to the change in A, B, X, Y?

Z=f(A)? Z=f(B)? Z=f(X)? Z=f(Y)? Or Z=f(A, B, X, Y)?

<u>Causation example</u>

<u>Take the statistic:</u> Living together before marriage increases the chance of divorce:

Causation example

BUT why do two people decide to live together?

Uncertainty about partner Living Together Fear of Commitment

What actually affects divorce rates?